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Introduction 

An analysis based on an interesting 1st year undergraduate question on Classical Mechanics regarding an 
object at rest “on a long, frictionless, inclined plane”, which “starts at an angle 𝜃 = 0 and is raised such 
that the angle increases linearly with time i.e. 𝜃 = 𝑘𝑡 where k is a constant with units of rad s-1“. The 
whole system is assumed to be “in a uniform gravitational field, g, directed downwards” 1. 

To simplify the problem, we will model the object on the plane as a dimensionless particle of mass m. 
We will consider the object to be sliding rather than rolling. We will assume that the plane is long enough 
to ensure the particle never reaches the bottom and that the plane is pivoted at the origin. We will also 
start by assuming that the particle does not leave the surface of the plane. In the final section, we will 
derive an expression for the conditions necessary for this to hold, but for the first section we will simply 
assume it to be true. 

The only forces acting on the particle, then, are its weight and the normal contact force due to the plane. 
This is illustrated in Figure 1. If we split these forces into components perpendicular and parallel to the 
plane, we find from Newton’s 2nd Law that: 

𝑚𝑎⊥ = 𝑁 −𝑚𝑔 𝑐𝑜𝑠𝜃 

𝑚𝑎∥ = −𝑚𝑔 𝑠𝑖𝑛𝜃 ⟹ 𝑎∥ = −𝑔 𝑠𝑖𝑛𝜃 = −𝑔 𝑠𝑖𝑛(𝑘𝑡) 

 
Figure 1: Free body diagram 

                                                           
1 Tymms, V. First Year Assessed Problem Sheet 1 [26th October 2012] Imperial College London, Physics Department. p.2 
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Deriving the equation of motion 

In a problem of this nature, it is most convenient to express the position, velocity and acceleration of the 
object in plane polar coordinates using unit base vectors 𝒓� and 𝜽�, where: 

𝒓� = 𝑐𝑜𝑠𝜃 𝒊 + 𝑠𝑖𝑛𝜃 𝒋 

𝜽� = −𝑠𝑖𝑛𝜃 𝒊 + 𝑐𝑜𝑠𝜃 𝒋 

Then the particle’s position is given by: 

𝒓 = 𝑟 𝒓�  

where r is the displacement of the particle along the plane. 

By differentiating this expression, we have the particle’s velocity as: 

�̇� = �̇� 𝒓� + 𝑟�̇� 𝜽� 

Differentiating again gives the particle’s acceleration as: 

�̈� = (�̈� − 𝑟�̇�2) 𝒓� + (2�̇��̇� + 𝑟�̈�) 𝜽�   2 

The acceleration components parallel and perpendicular to the plane are therefore expressed in polar 
coordinates by: 

𝑎∥ = (�̈� − 𝑟�̇�2) 

𝑎⊥ = (2�̇��̇� + 𝑟�̈�) 

Since 𝜃 = 𝑘𝑡, our expression for 𝑎∥ can be written as: 

 

𝑎∥ = (�̈� − 𝑟𝑘2) 

1 

We now have a simple differential equation, which we can solve to find r as a function of t: 

𝑎∥ = (�̈� − 𝑟𝑘2) =  −𝑔 𝑠𝑖𝑛𝜃 = −𝑔 sin (𝑘𝑡) 

i.e.: 

 

�̈� − 𝑟𝑘2 + 𝑔 sin(𝑘𝑡) = 0 

2 

  

                                                           
2 For derivation, see: Bostock, L. & Chandler, S. Applied Mathematics 2, Cheltenham: Stanley Thornes (1976) p. 87 



3 
 

The solution to this second-order linear differential equation can be shown to be: 

 

𝑟 = 𝐴𝑒𝑘𝑡 + 𝐵𝑒−𝑘𝑡 + �
𝑔

2 𝑘2
� sin (𝑘𝑡) 

3 

where A and B are constants of integration. 

To evaluate these constants, we use our initial conditions. At time 𝑡 = 0, 𝑟 = 𝑟0 and �̇� = 0. 

Then: 

𝑟0 = 𝐴 + 𝐵 ⇒ 𝐴 = 𝑟0 − 𝐵 

�̇� = 𝐴𝑘𝑒𝑘𝑡 − 𝐵𝑘𝑒−𝑘𝑡 + �
𝑔

2𝑘
� cos (𝑘𝑡) 

0 = 𝐴 − 𝐵 + �
𝑔

2𝑘2
� ⇒ 𝐴 = 𝐵 −

𝑔
2𝑘2

 

𝐵 =
𝑟0
2

+
𝑔

4𝑘2
 

𝐴 =
𝑟0
2
−

𝑔
4𝑘2

 

Thus, our solution becomes: 

𝑟 = �
𝑟0
2
−

𝑔
4𝑘2

� 𝑒𝑘𝑡 + �
𝑟0
2

+
𝑔

4𝑘2
� 𝑒−𝑘𝑡 + �

𝑔
2 𝑘2

� sin (𝑘𝑡) 

⇒ 𝑟 =
𝑟0
2 �𝑒𝑘𝑡 + 𝑒−𝑘𝑡� +

𝑔
4𝑘2

(𝑒−𝑘𝑡 − 𝑒𝑘𝑡) +
𝑔

2 𝑘2
sin (𝑘𝑡) 

⇒ 𝑟 = 𝑟0 cosh(𝑘𝑡) −
𝑔

2𝑘2
 sinh (𝑘𝑡) +

𝑔
2 𝑘2

sin (𝑘𝑡) 

 

⇒ 𝑟 = 𝑟0 cosh(𝑘𝑡) +
𝑔

2 𝑘2
(sin(𝑘𝑡) − sinh(𝑘𝑡)) 
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Condition for the object to leave the ramp 

We will now consider under what condition the object leaves the surface of the ramp. When this 
happens, the equation of motion we derived above will become invalid. Intuitively, we would expect that 
when the normal contact force changes from positive to negative, the object must have left the ramp. 

Applying Newton’s 2nd Law to the forces perpendicular to the plane gives: 

𝑁 −𝑚𝑔 𝑐𝑜𝑠𝜃 = 𝑚(2�̇��̇� + 𝑟�̈�) 

⇒ 𝑁 = 𝑚(2�̇��̇� + 𝑟�̈�) + 𝑚𝑔 𝑐𝑜𝑠𝜃 

Since 𝜃 = 𝑘𝑡, we have: �̇� = 𝑘 and  �̈� = 0. Also, at time 𝑡 = 0,𝜃 = 0 

∴ 𝑁 = 𝑚(2�̇�𝑘) + 𝑚𝑔 cos (𝑘𝑡) 

But �̇� = 𝑘𝑟0 sinh(𝑘𝑡) + 𝑔
2 𝑘

(cos(𝑘𝑡) − cosh(𝑘𝑡)) 

⇒ 𝑁 = 𝑚𝑘 �2𝑘𝑟0 sinh(𝑘𝑡) +
𝑔
𝑘

(cos(𝑘𝑡) − cosh(𝑘𝑡))� + 𝑚𝑔𝑐𝑜𝑠(𝑘𝑡) 

 

⇒ 𝑁 = 𝑚�2𝑘2𝑟0 sinh(𝑘𝑡) − 𝑔 cosh(𝑘𝑡) + 2𝑔 𝑐𝑜𝑠(𝑘𝑡)� 
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Thus, the particle leaves the ramp when: 

 

2𝑘2𝑟0 sinh(𝑘𝑡) − 𝑔 cosh(𝑘𝑡) + 2𝑔 𝑐𝑜𝑠(𝑘𝑡) = 0 
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providing: 

2𝑘2𝑟0 sinh(𝑘(𝑡 + 𝛿𝑡)) − 𝑔 cosh�𝑘(𝑡 + 𝛿𝑡)� + 2𝑔 𝑐𝑜𝑠�𝑘(𝑡 + 𝛿𝑡)� < 0 

where 𝛿𝑡 represents a small change in t. 

 


